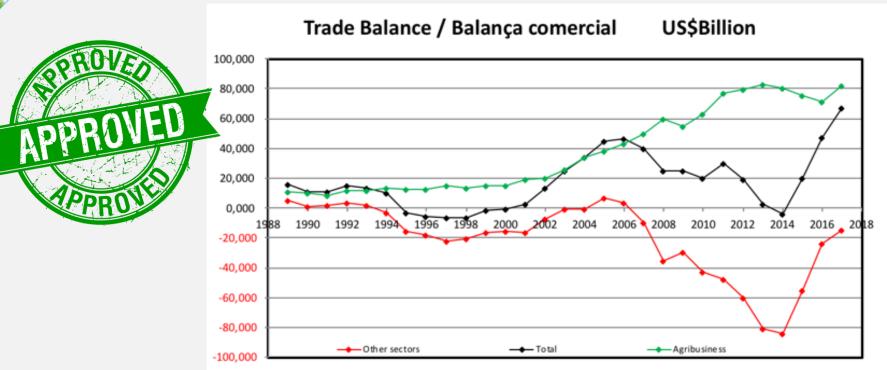

Prof. Dr. Caio A. Carbonari, UNESP/Botucatu

Eficiência no uso da terra

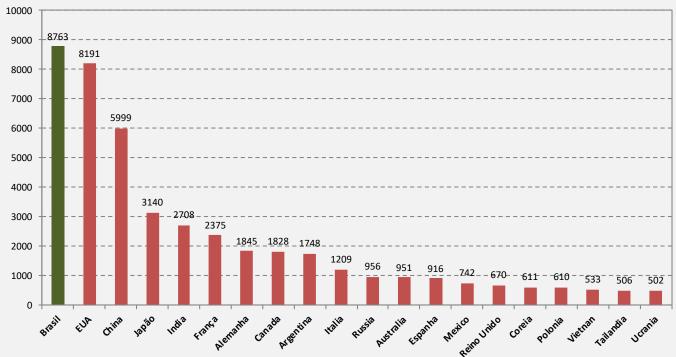

FAO (2019): FAOSTATbeta - http://www.fao.org/faostat/en/#data/QC (2019)

Impacto na estabilidade econômica

Esta Foto de Autor Desconhecido está licenciado em CC BY-NC

A partir de 2006, a grande evolução do superávit comercial agrícola é acompanhada do colapso da balança comercial dos demais setores.

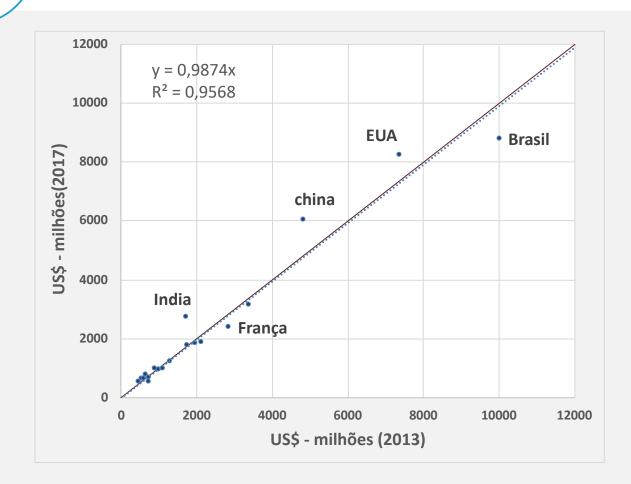
O superávit da agricultura tem sido fundamental para a estabilidade


Foto licenciada em CC BY-SA-NC

Qual é melhor forma de comparar o uso de defensivos agrícolas?

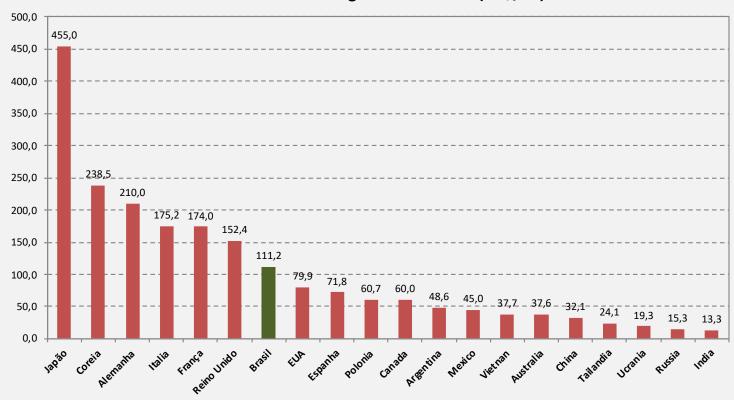
2013: O Brasil ocupava a mesma posição Uso total 2013: 10013 (US\$ - milhões) -12,5%

Uso total de defensivos agrícolas em 2017 (US\$ - milhões)


Os defensivos agrícolas são commodities internacionais e o valor do consumo (em US\$) tem alta correlação e é indicador da quantidade consumida (em t)

Phillips McDougall (2018): Industry Overview – 2017 Market

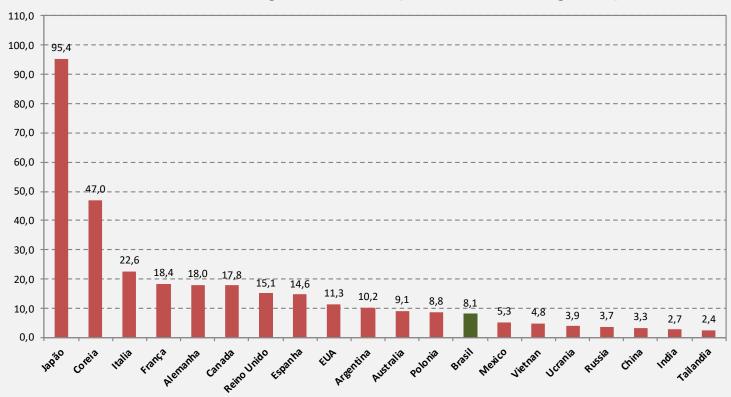
O uso vem aumentando?


Phillips McDougall (2018): Industry Overview – 2017 Market

Uso de defensivos agrícolas expresso por área cultivada

Uso de defensivos agrícolas em 2017 (US\$/ha)

2013: O Brasil ocupava a mesma posição Uso por área 2013: 138,6 US\$/há -19,7%

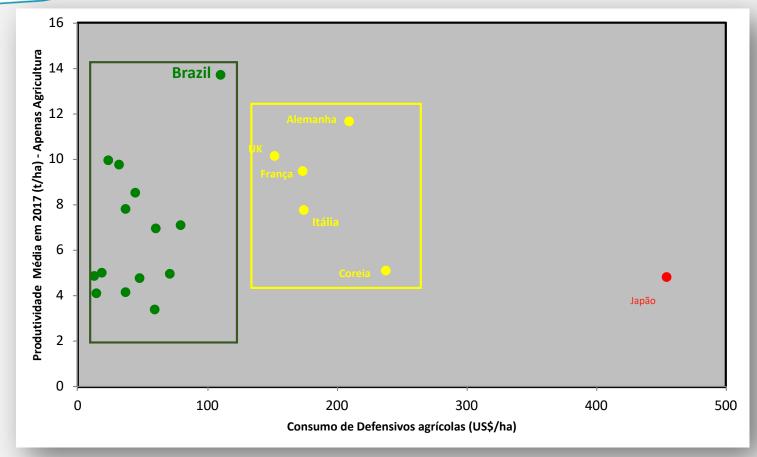

Phillips McDougall (2018): Industry Overview – 2017 Market FAO (2018): FAOSTATbeta - http://faostat.fao.org/beta/en/#data/QC

Uso de defensivos agrícolas expresso por tonelada de produtos agrícolas

Uso de defensivos agrícolas em 2017 (US\$/t de Produtos Agrícolas)

2013: O Brasil
ocupava a mesma
posição
Uso por área 2013:
9,6 US\$/t
-15,6%

Phillips McDougall (2018): Industry Overview – 2017 Market FAO (2018): FAOSTATbeta - http://faostat.fao.org/beta/en/#data/QC

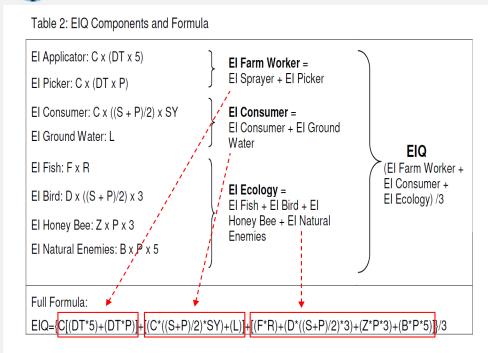


Média de Produtividade (t/ha) em função do uso de defensivos agrícolas (US\$/ha) - 2017

Fontes: Phillips McDougall (2018): Industry Overview – 2017 Market

FAO (2018): FAOSTATbeta - http://faostat.fao.org/beta/en/#data/QC

Consumo versus Risco



- O consumo de agrotóxicos representa adequadamente o risco associado a esses produtos?
- A tendência mundial é utilizar indicadores de risco.
- O indicador de uso mais frequente é o **EIQ Environmental Impact Quotient.**
- Fundamentado no uso de ingrediente ativo e n\u00e3o produto comercial
- Combina várias informações, incluindo a dose de aplicação
- Permite comparar culturas, sistemas de produção, anos, países e produtos (p.c. ou i.a.)

Uso do EIQ para estimar o risco do uso de Agrotóxicos – Literatura

FAO (2008): Guidance Document No 2: Guidance on the Use of Environmental Impact Quotient in IPM Impact Assessment.

Evaluation of the Changes in Pesticide Risk – Executive Summary

http://www.omafra.gov.on.ca/english/crops/facts/pesticide-use-exec.htm

New York State Integrated Pest Management Program. EIQ Calculator.

http://www.nysipm.cornell.edu/EIQCalc/input.php?cat=0

A Method to Measure the Environmental Impact of Pesticides

http://www.nysipm.cornell.edu/publications/eiq/equation.asp#table2 http://www.nysipm.cornell.edu/publications/eiq/files/EIQ_values_201 2entire.pdf

Kovach, J., C. Petzoldt. J. Degni, and J. Tette. 1992. A method to measure the environmental impact of pesticides. N.Y. Food Life Sci. Bull. 139.

FAO, 2008. IPM Impact Assessment Series. Guidance Document No 2: Guidance on the Use of Environmental Impact Quotient in IPM Impact Assessment.

Uso do EIQ para estimar o risco do uso de Agrotóxicos – Literatura

Table 1: The parameters and rating system used to calculate the EIQ value for specific active ingredients (Kovach et al., 1992)

Variables	Symbol	Score 1	Score 3	Score 5
Long-term health effects	С	Little-none	Possible	Definite
Dermal toxicity (Rat LD ₅₀)	DT	>2000 mg/kg	200-2000 mg/kg	0-200 mg/kg
Bird toxicity (8 day LC ₅₀)	D	>1000 ppm	100-1000 ppm	1-100 ppm
Bee toxicity	Z	Non-toxic	Moderately toxic	Highly toxic
Beneficial arthropod toxicity	В	Low impact	Moderate	Severe impact
Fish toxicity (96 hr LC ₅₀)	F	>10 ppm	1-10 ppm	<1 ppm
Plant surface half-live	Р	1-2 weeks	2-4 weeks	>4 weeks
		pre-emerg. herbic.	post-emerg. herbic.	
Soil residue half-live (TI/2)	S	<30 days	30-100 days	>100 days
Mode of action	SY	Non-systemic;	Systemic	
		all herbicides		
Leaching potential	Ĺ	Small	Medium	Large
Surface runoff potential	R	Small	Medium	Large

FAO (2008): Guidance Document No 2: Guidance on the Use of Environmental Impact Quotient in IPM Impact Assessment.

EIQ: Consumo versus Risco

Impacto do uso de diferentes classes de OGMs no consumo de agrotóxicos e no produto das unidades de EIQ pelo número de hectares cultivados no período de 1996 a 2015.

	Ingrediente Ativo	Ingrediente Ativo	Unidades de EIQ.ha	Unidades de EIQ.ha
Tipo de Evento	Diferença em Mkg	Diferença em %	Variação em Milhões	Variação em porcentagem
Soja Tolerante a Herbicidas	15,3	0,5	-8.112	-13,9
Soja Tolerante a Herbicidas e				
Resistente a Insetos	-3,6	-1,4	-348	-4,3
Milho Tolerante a Herbicidas	-226,0	-8,4	-7.315	-12,7
Milho Resistente a Insetos	-87,1	-53,3	-3.891	-57,7
Algodão Tolerante a Herbicidas	-25,1	-7,6	-629	-10,2
Algodão Resistentes a Insetos	-268,7	-29,1	-11.949	-31,5
Total	-595,2		-32.244	
Média		-16,6		-21,7

BROOKES, G.; BARFOOT, P. GM crops: global socio-economic and environmental

impacts 1996-2015. Dorchester: PG Economics, 2017. 201 p.

glyphosate

The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level

Graham Brookes, Farzad Taheripour & Wallace E. Tyner

To cite this article: Graham Brookes, Farzad Taheripour & Wallace E. Tyner (2017) The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level, GM Crops & Food, 8:4, 216-228, DOI: 10.1080/21645698.2017.1390637

To link to this article: https://doi.org/10.1080/21645698.2017.1390637

Impacto de 1.13 billion de unidades de EIQ/ha (aumento de 12,4%)

- +762.000 ha adicionais
- + emissão de CO₂: 11,77 mi de carros adicionais

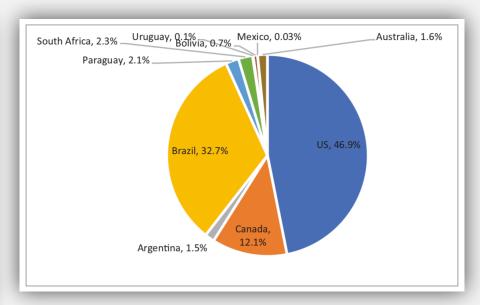
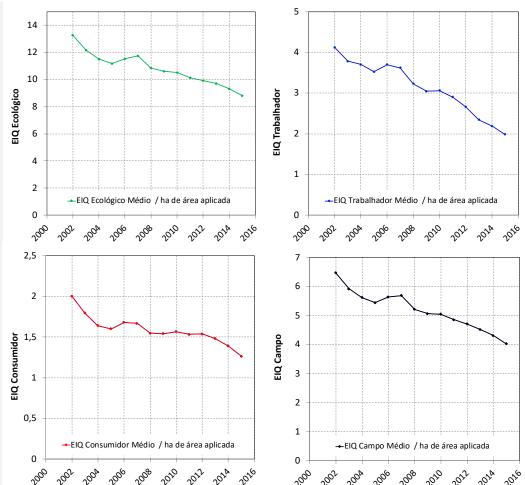


FIGURE 2. Annual loss of GM HT environmental benefits as measured by EIQ indicator, if glypho- sate use no longer allowed: by country: total 1.13 billion EIQ/ha field units. Source: Derived from Brookes G and Barfoot P

ElQs Consumidor, Trabalhador, Ambiental, Total: Valor médio para Soja, Milho, Algodão e Cana-de-Acúcar

Reduções de EIQ Médio por hectare de área aplicada de 2002 a 2015*:

- Trabalhador: -51,91%


- Consumidor: -36,88%

- Ambiental: -33,72%

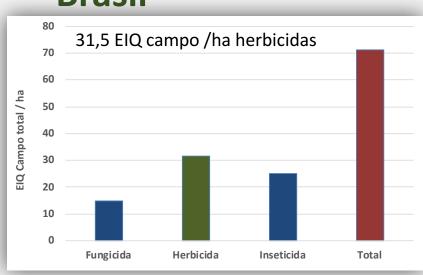
- Campo (Total):-37,91

*Combina redução do risco médio dos produtos e redução da dose média aplicada por ha.

Os valores de EIQ foram calculados utilizando-se o banco de dados de consumo de agrotóxico nas culturas da soja, milho, algodão e cana. Considerou-se todos os ingredientes ativos utilizados nessas culturas durante os anos de 2002 a 2015

Informações para Soja - herbicidas

Table 38: Herbicide usage on soybeans in the US 1996-2014


Year	Average ai use (kg/ha): NASS data	Average ai use: GfK Kynetec data: index 1998=100	Average field EIQ/ha: NASS data	Average field EIQ/ha: based on GfK Kynetec data
1996	1.02	N/a	22.0	N/a
1997	1.22	N/a	26.2	N/a
1998	1.09	100	21.5	25.8
1999	1.05	94.9	19.6	23.2
2000	1.09	96.0	20.2	23.1
2001	0.73	100.1	13.4	23.5
2002	1.23	97.8	21.4	21.6
2003	N/a	104.7	N/a	22.6
2004	1.29	106.1	15.2	22.6
2005	1.23	106.3	20.2	22.6
2006	1.53	101.3	16.9	21.4
2007	N/a	113.0	N/a	23.6
2008	N/a	125.1	N/a	26.1
2009	N/a	125.7	N/a	26.6
2010	N/a	135.0	N/a	28.8
2011	N/a	144.8	N/a	31.3
2012	1.97	160.9	32.0	35.0
2013	N/a	166.1	N/a	35.9
2014	N/a	165.6	N/a	35.9

Sources: NASS data no collection of data in 2003, 2007-2011, 2013, 2014. GfK 1998-2014, N/A = not available. Average ai/ha figures derived from GfK dataset are not permitted by GfK to be published

EUA 2014: 35,9 EIQ campo /ha herbicidas

Fonte Tabela: Global Impact of GM Crops (PG Economics - UK, 2014)

Brasil

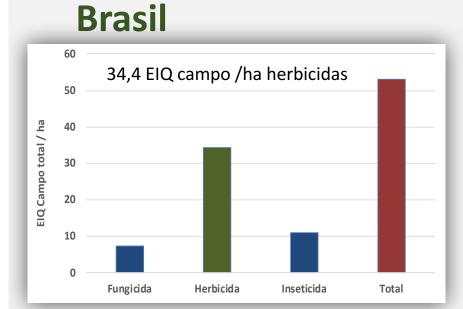

Informações para Milho - herbicidas

Table 44: Herbicide usage on maize in the US 1996-2014

Year	Average ai use	Average ai use	Average field	Average field EIQ/ha:
	(kg/ha): NASS data	(kg/ha) index	EIQ/ha: NASS data	GfK data
		1998=100: GfK data		
1996	2.64	N/a	54.4	N/a
1997	2.30	N/a	48.2	N/a
1998	2.47	100	51.3	62.0
1999	2.19	88.1	45.6	54.7
2000	2.15	87.8	46.2	54.5
2001	2.30	86.6	48.8	53.8
2002	2.06	82.4	43.4	51.1
2003	2.29	83.2	47.5	51.2
2004	N/a	80.0	N/a	48.9
2005	2.1	80.6	51.1	48.7
2006	N/a	79.5	N/a	47.7
2007	N/a	85.0	N/a	49.8
2008	N/a	88.7	N/a	50.9
2009	N/a	86.9	N/a	49.7
2010	2.36	90.5	49.2	51.4
2011	N/a	91.6	N/a	51.8
2012	N/a	95.6	N/a	53.8
2013	N/a	101.3	N/a	56.8
2014	2.45	100.7	47.0	56.2

Sources and notes: derived from NASS pesticide usage data 1996-2003 and 2010 (no data collected in 2004, 2006-2009, 2011-2013), GfK data from 1998-2014. N/a = not available. Average ai/ha figures derived from

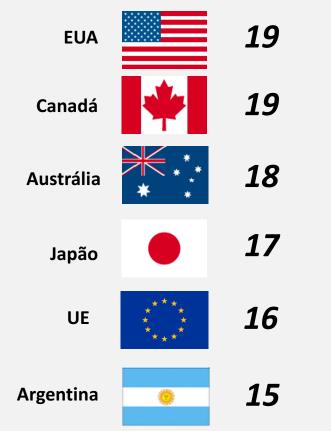
EUA 2014: 47 - 56 EIQ campo /ha herbicidas

Fonte Tabela: Global Impact of GM Crops (PG Economics - UK, 2014)

Ética e Inovação

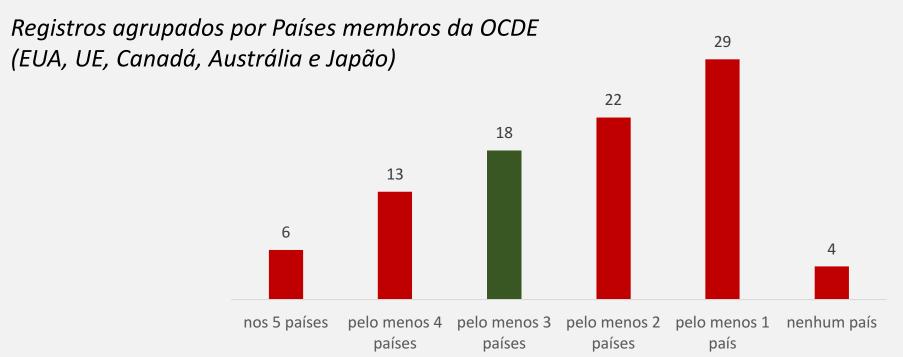
- ✓ Evitar o que é inseguro.
- ✓ Dar acesso ao que é seguro.
- ✓ Decidir com rapidez e correção.
- ✓ Decisão caso a caso e à luz do conhecimento técnico e científico são bons critérios.
- ✓ Monitorar e ter a possibilidade de rever decisões ajuda a construir sistemas decisórios mais rápidos e seguros.

32 Novos ingredientes ativos na fila para registro no Brasil



Fontes:

//iaspub.epa.gov/apex/pesticides/f?p=chemicalsearch:1; http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.selection&language=EN; http://pr-rp.hc-sc.gc.ca/pi-ip/index-eng.php; https://portal.apvma.gov.au/pubcris; https://www.acis.famic.go.jp/eng/ailist/index.htm; httpshttps://www.argentina.gob.ar/files/activoswebene2019xls-0.

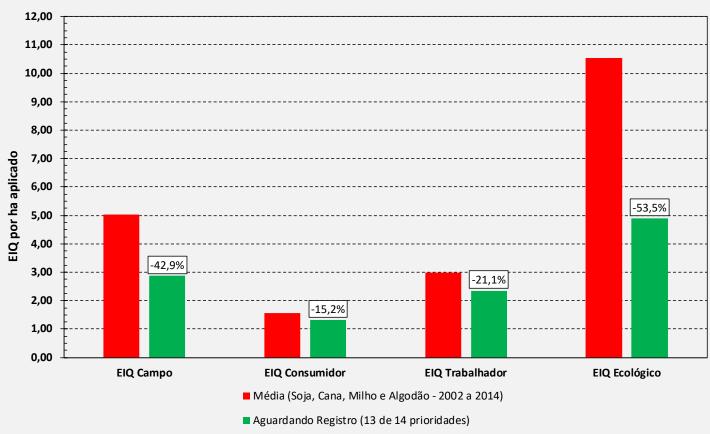

Acesso às novas tecnologias e competitividade da nossa agricultura

Já aprovados em outros países

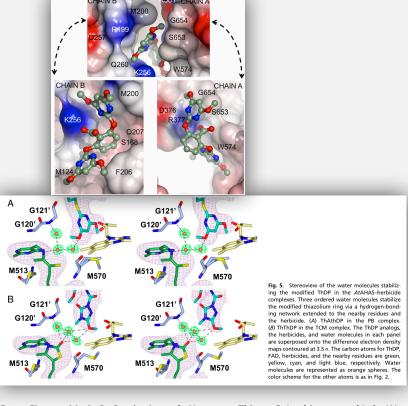
Acesso às novas tecnologias e competitividade da nossa agricultura

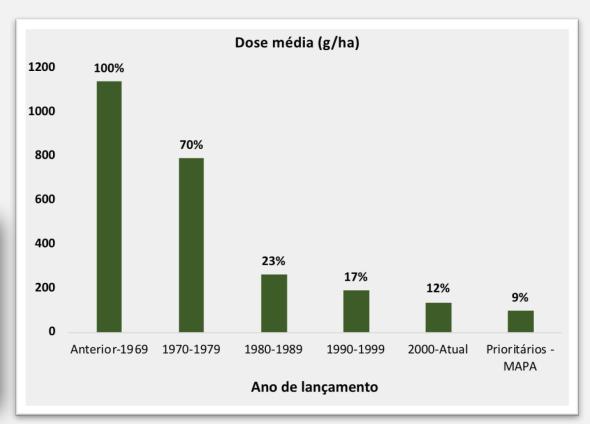
Fontes:

//iaspub.epa.gov/apex/pesticides/f?p=chemicalsearch:1; http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.selection&language=EN; http://pr-rp.hc-sc.gc.ca/pi-ip/index-eng.php;

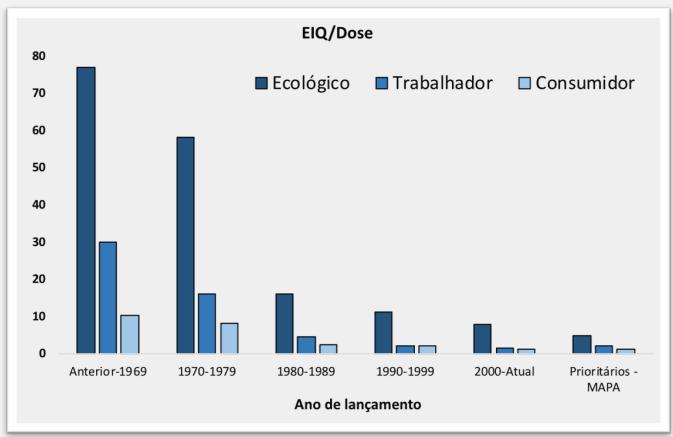

https://portal.apvma.gov.au/pubcris;

https://www.acis.famic.go.jp/eng/ailist/index.htm; httpshttps://www.argentina.gob.ar/files/activoswebene2019xls-0


Comparação dos EIQs de produtos comerciais e dos que estão na lista de prioridades


Foram calculados os EIQs de 13 dos 14 defensivos agrícolas aguardando registro e incluídos na lista de prioridades do MAPA.
Obs: Para um dos defensivos da lista não foi possível encontrar na literatura disponível todas as variáveis necessários para o cálculo do EIQ.

Avanços tecnológicos – melhor conhecimento e maior especificidade dos defensivos com os sítios de ação


Fonte Figuras: Mario D. Garcia, Amanda Nouwens, Thierry G. Lonhienne, and Luke W. Guddat. Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. PNAS first published January 30, 2017 https://doi.org/10.1073/pnas.1616142114

Foram considerados todos os defensivos agrícolas em uso no Brasil e o ano de lançamento de cada defensivo agrícola

Avanços tecnológicos – melhor conhecimento e maior especificidade dos defensivos com os sítios de ação

Foram calculados os EIQs de todos os defensivos agrícolas em uso no Brasil e o ano de lançamento de cada defensivo agrícola

Mensagens finais

- ✓ O uso de agrotóxicos no Brasil, expresso em US\$/ha ou US\$/t produzida, é inferior ao da maioria dos países relevantes do ponto de vista agrícola.
- ✓ A melhor alternativa para avaliar os riscos associados ao uso dos agrotóxicos é o uso do EIQ.
- ✓ Os valores de EIQ/ha no Brasil são compatíveis ou inferiores aos internacionais.
- ✓ Em termos médios, os valores EIQ Campo, EIQ Consumidor, EIQ Trabalhador e EIQ Ecológico calculados por kg de i.a., kg de p.c. e por ha aplicado, são decrescentes de 2002 a 2015, indicando que os agrotóxicos comercializados no Brasil vêm se tornando progressivamente mais seguros.
- ✓ A questão central não é se o defensivo agrícola é antigo ou novo, a questão central é o baixo risco. Mas existe a tendência clara dos produtos mais modernos apresentarem menor risco (especialmente em função da redução das doses)

Muito obrigado pela atenção caio.carbonari@unesp.br